(1)

All questions are for separate science students only

$\boldsymbol{\cap}$	1	
u		
_	_	

This	question is about salts.		
(a)	Name the salt produced by the neutralise potassium hydroxide.	ation of hydrochloric acid with	
(b)	Write an ionic equation for the neutralisa potassium hydroxide.	•	(1)
			(1)
(c)	Soluble salts can be produced by reacting insoluble solid.	g dilute hydrochloric acid with an	
	Copper, copper carbonate and copper of	xide are insoluble solids.	
	Which of these insoluble solids can be used to reacting the solid with dilute hydrochloride.	• • • • • • • • • • • • • • • • • • • •	
	Tick (✓) one box.		
	Copper and copper carbonate only		
	Copper and copper oxide only		
	Copper carbonate and copper oxide only		
	Copper, copper carbonate and copper oxide		

A student makes crystals of magnesium sulfate.

This is the method used.

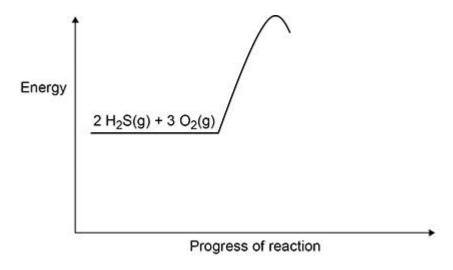
- 1. Add sulfuric acid to a beaker.
- 2. Warm the sulfuric acid.
- 3. Add a spatula of magnesium oxide to the beaker.
- 4. Stir the mixture.
- 5. Repeat steps 3 and 4 until there is magnesium oxide remaining in the beaker.
- 6. Filter the mixture.
- 7. Evaporate the filtrate gently until crystals start to form.

step 6. Step 5 Step 6 How should the filtrate be evaporated gently in step 7 ? Fron chloride is produced by heating iron in chlorine gas. The equation for the reaction is: 2 Fe + 3 Cl ₂ → 2 FeCl ₃ Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: the number of moles of iron used the number of moles of chlorine that react with 14 g of iron the volume of chlorine needed. Relative atomic mass (<i>A</i> _i): Fe = 56	step 2 step 5 step 6. Step 5 Step 5 Step 6 Step 6 Step 6 Step 6 Step 6 Step 6 Step 7?
• step 6. Step 2 Step 5 Step 6 How should the filtrate be evaporated gently in step 7? ron chloride is produced by heating iron in chlorine gas. The equation for the reaction is: 2 Fe + 3 Cl₂ → 2 FeCl₃ Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: • the number of moles of iron used • the number of moles of chlorine that react with 14 g of iron	step 6. Step 5 Step 6 Step 6 How should the filtrate be evaporated gently in step 7? on chloride is produced by heating iron in chlorine gas. The equation for the reaction is:
Step 5 Step 6 How should the filtrate be evaporated gently in step 7 ? ron chloride is produced by heating iron in chlorine gas. The equation for the reaction is: 2 Fe + 3 Cl ₂ → 2 FeCl ₃ Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: • the number of moles of iron used • the number of moles of chlorine that react with 14 g of iron • the volume of chlorine needed. Relative atomic mass (<i>A</i> ₁): Fe = 56	Step 5 Step 6 How should the filtrate be evaporated gently in step 7 ? on chloride is produced by heating iron in chlorine gas. The equation for the reaction is:
Step 5	Step 5 Step 6 How should the filtrate be evaporated gently in step 7 ? on chloride is produced by heating iron in chlorine gas. The equation for the reaction is:
Step 5 Step 6 How should the filtrate be evaporated gently in step 7 ? ron chloride is produced by heating iron in chlorine gas. The equation for the reaction is: $2 \text{ Fe} + 3 \text{ Cl}_2 \rightarrow 2 \text{ FeCl}_3$ Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: • the number of moles of iron used • the number of moles of chlorine that react with 14 g of iron • the volume of chlorine needed. Relative atomic mass (A_r): Fe = 56	Step 6 How should the filtrate be evaporated gently in step 7 ? on chloride is produced by heating iron in chlorine gas. The equation for the reaction is:
How should the filtrate be evaporated gently in step 7 ? From chloride is produced by heating iron in chlorine gas. The equation for the reaction is: $2 \text{ Fe} + 3 \text{ Cl}_2 \rightarrow 2 \text{ FeCl}_3$ Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: • the number of moles of iron used • the number of moles of chlorine that react with 14 g of iron • the volume of chlorine needed. Relative atomic mass (A_r): Fe = 56	How should the filtrate be evaporated gently in step 7 ? on chloride is produced by heating iron in chlorine gas. The equation for the reaction is:
How should the filtrate be evaporated gently in step 7 ? ron chloride is produced by heating iron in chlorine gas. The equation for the reaction is: 2 Fe + 3 Cl₂ → 2 FeCl₃ Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: • the number of moles of iron used • the number of moles of chlorine that react with 14 g of iron • the volume of chlorine needed. Relative atomic mass (<i>A</i> _r): Fe = 56	How should the filtrate be evaporated gently in step 7 ? on chloride is produced by heating iron in chlorine gas. The equation for the reaction is:
The equation for the reaction is: 2 Fe + 3 Cl₂ → 2 FeCl₃ Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: the number of moles of iron used the number of moles of chlorine that react with 14 g of iron the volume of chlorine needed. Relative atomic mass (A₁): Fe = 56	The equation for the reaction is:
Calculate the volume of chlorine needed to react with 14 g of iron. You should calculate: the number of moles of iron used the number of moles of chlorine that react with 14 g of iron the volume of chlorine needed. Relative atomic mass (A _r): Fe = 56	2 Fe + 3 Cl ₂ \rightarrow 2 FeCl ₃
You should calculate: the number of moles of iron used the number of moles of chlorine that react with 14 g of iron the volume of chlorine needed. Relative atomic mass (A _r): Fe = 56	
 the number of moles of iron used the number of moles of chlorine that react with 14 g of iron the volume of chlorine needed. Relative atomic mass (A_r): Fe = 56 	Calculate the volume of chlorine needed to react with 14 g of iron.
` <i>'</i>	the number of moles of iron used the number of moles of chlorine that react with 14 g of iron
` <i>'</i>	Relative atomic mass (A_r) : Fe = 56
	· <i>,</i>

	Volume of chlorine =dm ³	
	(Total 10 m	(3) narks)
2.		
Inis	question is about the reaction between hydrogen sulfide (H ₂ S) and oxygen.	
	The equation for the reaction is:	
	$2 H_2S(g) + 3 O_2(g) \rightarrow 2 H_2O(g) + 2 SO_2(g)$	
(a)	What does H ₂ O(g) represent?	
		(1)
(b)	Calculate the volume of oxygen required to react with 50 cm³ of hydrogen sulfide.	
	·	
	Volume =cm ³	
		(1

(c) **Figure 1** shows part of the reaction profile for the reaction.

The reaction is exothermic.


Complete Figure 1.

You should:

- complete the profile line
- label the activation energy
- label the overall energy change.

Figure 1

(3)

(d) **Figure 2** shows the displayed formula equation for the reaction of hydrogen sulfide with oxygen.

Figure 2

$$2H-S-H + 30=0 \rightarrow 2H-O-H + 20=S=0$$

The table below shows some of the bond energies.

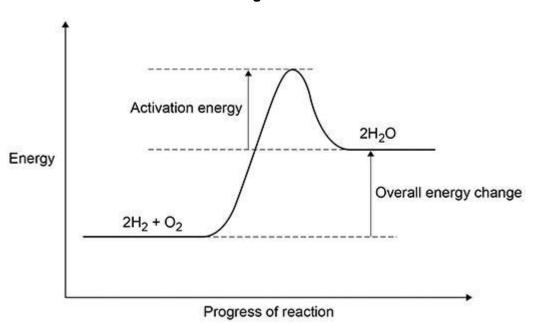
Bond	$H\!-\!S$	0=0	H-O	s=0
Energy in kJ/mol	364	498	464	х

In the reaction the energy released forming new bonds is 1034 kJ/mol greater than the energy needed to break existing bonds.

Calculate the bond energy **X** for the bond.

Use Figure 2 and the table above.

X =	kJ/mol
	(5)
	(Total 10 marks)


Q3.

The reaction between hydrogen and oxygen releases energy.

(a) A student drew a reaction profile for the reaction between hydrogen and oxygen.

Figure 1 shows the student's reaction profile.

Figure 1

The student made **two** errors when drawing the reaction profile.

Describe the two errors.

1	
2	
_	

(2)

(b) The reaction between hydrogen and oxygen in a hydrogen fuel cell is used to produce electricity.

Hydrogen fuel cells and rechargeable cells are used to power some cars.

Give **two** advantages of using hydrogen fuel cells instead of using rechargeable cells to power cars.

Reactions occ lydrogen fuel	cur at the positive electrode and at the negative electrode in a cell.
Vrite a half ed	quation for one of these reactions.
he three stat	res of matter can be represented by a simple particle model.
Figure 2 show	ws a simple particle model for hydrogen gas.
	Figure 2
Sive two limit	ations of this simple particle model for hydrogen gas.
<u> </u>	
·	

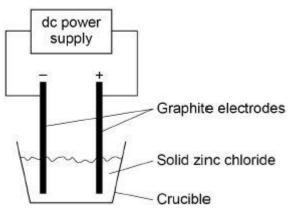
Q4.

(f)	The energy needed for a car powered by a hydrogen fuel cell to travel 100 km is 58 megajoules (MJ).
	The energy released when 1 mole of hydrogen gas reacts with oxygen is 290 kJ
	The volume of 1 mole of a gas at room temperature and pressure is 24 dm ³
	Calculate the volume of hydrogen gas at room temperature and pressure needed for the car to travel 100 km
	Volume of hydrogen gas = dm ³
	(4) (Total 12 marks)
. This	question is about electrolysis.
Alum cryo	ninium is produced by electrolysing a molten mixture of aluminium oxide and lite.
(a)	Explain why a mixture is used as the electrolyte instead of using only aluminium oxide.
	(2)
(b)	What happens at the negative electrode during the production of aluminium?
	Tick (✓) one box.

	Aluminium atoms gain electrons.	
	Aluminium atoms lose electrons.	
	Aluminium ions gain electrons.	
	Aluminium ions lose electrons.	
		(
)	Oxygen is produced at the positive electrode.	
	Complete the balanced half-equation for the process at the positive electrode.	
	\rightarrow O_2 +	(
)	Explain why the positive electrode must be continually replaced.	
		,
		(
)	The overall equation for the electrolysis of aluminium oxide is:	
	$2 Al2O3 \rightarrow 4 Al + 3 O2$	
	Calculate the mass of oxygen produced when 2000 kg of aluminium oxide is completely electrolysed.	
	Relative atomic masses (A_r): $O = 16$ $AI = 27$	

	Mass of oxygen =k
	um metal and chlorine gas are produced by the electrolysis of molten um chloride.
(f)	Explain why sodium chloride solution cannot be used as the electrolyte to produce sodium metal.
(g)	Calculate the volume of 150 kg of chlorine gas at room temperature and pressure.
	The volume of one mole of any gas at room temperature and pressure is 24.0 dm³
	Relative formula mass (M_r): $Cl_2 = 71$
	Volume = dm
	(Total 16
·	
This	question is about combustion of fuels.
(a)	Some central heating boilers use wood as a fuel.
	Suggest two reasons why wood is more sustainable than natural gas as a fuel for central heating boilers.

. ~	al gas is mainly methane.
r	n methane burns it can produce both carbon monoxide and carbon dioxide
	Explain the process by which carbon monoxide can be produced when methane is burned.
	Balance the equation for the combustion of methane to produce carbon monoxide.
	$___CH_4(g) + ___O_2(g) \rightarrow ___CO(g) + ___$
	$\overline{H_2O(I)}$
	$H_2O(I)$ Propane burns to form carbon dioxide and water.
	$H_2O(I)$
	$H_2O(I)$ Propane burns to form carbon dioxide and water.
	$H_2O(I)$ Propane burns to form carbon dioxide and water. The equation for the reaction is: $C_3H_8(g)+5\ O_2(g)\to 3\ CO_2(g)+4\ H_2O(I)$
	$H_2O(I)$ Propane burns to form carbon dioxide and water. The equation for the reaction is: $C_3H_8(g) + 5 \ O_2(g) \rightarrow 3 \ CO_2(g) + 4 \ H_2O(I)$ 3.60 dm³ carbon dioxide is produced when a sample of propane is burned

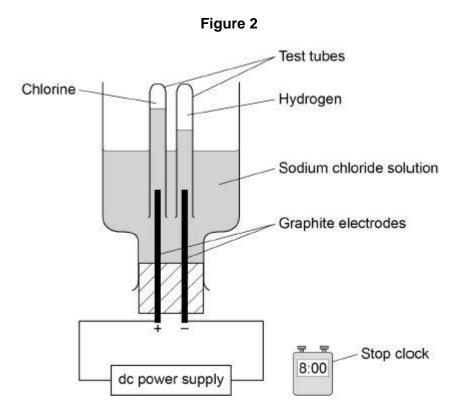

Volume of unreacted oxygen =	cm ³
, ,	(4) (Total 9 marks)

Q6.

A student investigated the electrolysis of different substances.

Figure 1 shows the apparatus.

Figure 1



Explain why electrolysis would not take place in the apparatus shown in Figure 1 .
Explain why graphite conducts electricity.
Answer in terms of the structure and bonding in graphite.

(3)

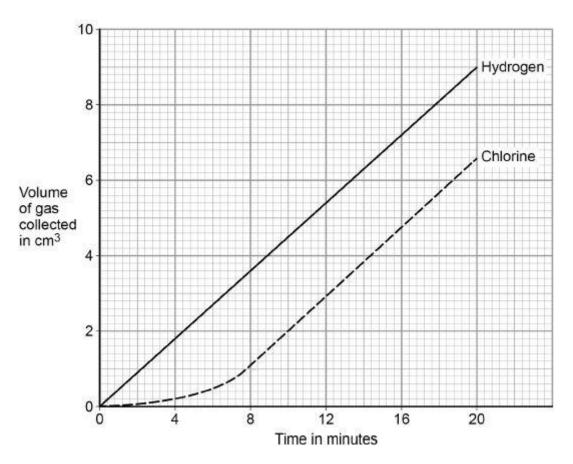
The student investigated how the volume of gases produced changes with time in the electrolysis of sodium chloride solution.

Figure 2 shows the apparatus.

(c) The student made an error in selecting the apparatus for this investigation.

How should the apparatus be changed?

Give one reason for your answer.							


(2)

Another student used the correct apparatus.

This student measured the volumes of gases collected every minute for 20 minutes.

Figure 3 shows the student's results.

Figure 3

(d) Describe the trends shown in the results.

Use values from Figure 3.						

(3)

(e) The number of moles of each gas produced at the electrodes is the same.No gas escapes from the apparatus.Suggest one reason for the difference in volume of each gas collected.

(1)

(f) Calculate the amount in moles of chlorine collected after 20 minutes.

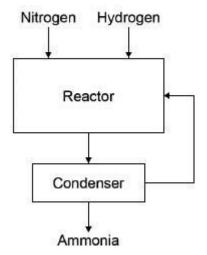
Use Figure 3.

The volume of one mole of any gas at room temperature and pressure is 24.0 dm³

Give your answer in standard form.

Moles of chlorine = _____ mol

(3)


(Total 14 marks)

Q7.

Nitrogen and hydrogen react to produce ammonia in the Haber process.

Figure 1 shows the Haber process.

Figure 1

A gaseous mixture of ammonia, hydrogen and nitrogen leaves the reactor.

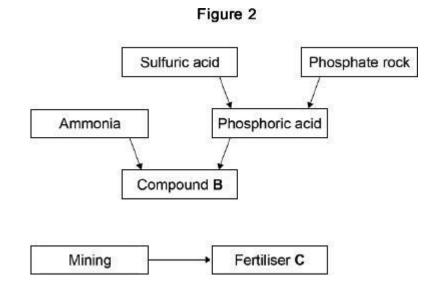

Table 1 shows the boiling points of the gases.

Table 1

Gas	Boiling point in °C
Ammonia	-33
Nitrogen	-196

	Hydrogen	-253	
Suggest how an	nmonia is separated from	m the other gases.	
What happens to	o the unreacted hydroge	en and nitrogen?	
quation for the r		ONUL ()	
	2(g) + 3H ₂ (g)	\Rightarrow 2NH ₃ (g)	
rward reaction i			
Calculate the vo 825 dm³ of hydr	lume of ammonia produ ogen.	iced from the comple	te reaction of
	Volume of ammo	nia =	dm
The Haber proceatmospheres.	ess uses a temperature	of 450 °C and a pres	ssure of 200
Why are these o	onditions used?		
Tick two boxes.			
A binbanna	ıre is maintained using l		7

	A higher temperature would increase the equilibrium yield						
	A lower pressure would decrease the equilibrium yield						
	A lower temperature would make the reaction too slow						
	There are mor	e product molecule	es than reactant mole	ecules	a 6		
los [,]	t of the ammonia	produced is used	to make fertilisers.				
abl	e 2 shows inform	nation about compo	ounds used as fertilis	sers.			
			Table 2				
		Compound	Formula	Cost in £ / tonne			
		Α	NH ₄ NO ₃	220			
		В	(NH ₄) ₂ HPO ₄	350			
		С	KCI	235			
e)			proves agricultural p				
)	Which two compounds can be mixed to make a fertiliser containing three elements that improve agricultural productivity?						
	Give a reason why you have chosen these compounds.						
	Compounds and						
	Reason						

Suggest two possible reasons for the difference in cost between compounds ${\bf B}$ and ${\bf C}$.

1. ַ	
_	
2	

(Total 12 marks)

(2)